Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Gossmann, Toni (Ed.)Abstract Biodiversity has experienced tremendous shifts in community, species, and genetic diversity during the Anthropocene. Understanding temporal diversity shifts is especially critical in biodiversity hotspots, i.e., regions that are exceptionally biodiverse and threatened. Here, we use museomics and temporal genomics approaches to quantify temporal shifts in genomic diversity in an assemblage of eight generalist highland bird species from the Ethiopian Highlands (part of the Eastern Afromontane Biodiversity Hotspot). With genomic data from contemporary and historical samples, we demonstrate an assemblage-wide trend of increased genomic diversity through time, potentially due to improved habitat connectivity within highland regions. Genomic diversity shifts in these generalist species contrast with general trends of genomic diversity declines in specialist or imperiled species. In addition to genetic diversity shifts, we found an assemblage-wide trend of decreased realized mutational load, indicative of overall trends for potentially deleterious variation to be masked or selectively purged. Across this avian assemblage, we also show that shifts in population genomic structure are idiosyncratic, with species-specific trends. These results are in contrast with other charismatic and imperiled African taxa that have largely shown strong increases in population genetic structure over the recent past. This study highlights that not all taxa respond the same to environmental change, and generalists, in some cases, may even respond positively. Future comparative conservation genomics assessments on species groups or assemblages with varied natural history characteristics would help us better understand how diverse taxa respond to anthropogenic landscape changes.more » « lessFree, publicly-accessible full text available August 19, 2026
-
Abstract The radiation of so-called “great speciators” represents a paradox among the myriad of avian radiations endemic to the southwest Pacific. In such radiations, lineages otherwise capable of dispersing across vast distances of open ocean differentiate rapidly and frequently across relatively short geographic barriers. Here, we evaluate the phylogeography of the Rufous Fantail (Rhipidura rufifrons). Although a presumed “great-speciator”, no formal investigations across its range have been performed. Moreover, delimitation of lineages within R. rufifrons, and the biogeographic implications of those relationships, remain unresolved. To investigate whether R. rufifrons represents a great speciator we identified thousands of single nucleotide polymorphisms for 89 individuals, representing 19 described taxa. Analyses recovered 7 divergent lineages and evidence of gene flow between geographically isolated populations. We also found plumage differences to be a poor proxy for evolutionary relationships. Given the relatively recent divergence dates for the clade (1.35–2.31 mya), rapid phenotypic differentiation, and evidence for multiple independent lineages within the species complex, we determine that R. rufifrons possesses the characteristics of a great speciator.more » « less
An official website of the United States government
